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A calculation procedure for rapid computation of steady multidimensional viscous flows is 
prcscntcd. The method solves the Navier-Stokes equations in primitivc variables using a 
coupled block-implicit multigrid procedure. The procedure is applicable to finite-difference 
formulations using staggered locations of the flow variables. A smoothing technique called 
symmetrical coupled Gauss-&de1 (SCGS) is proposed and is empirically observed to provide 
good smoothing rates. The viscous flow in a square cavity with a moving top wall is 
calculated for a range of Reynolds numbers. Calculations with finite difference grids as large 
as 321 x 321 nodes have been made to test the accuracy and efficiency of the calculation 
scheme. The CPU times for these calculations are observed to be significantly smaller than 
other solution algorithms with primitive variable formulation. The calculated flow fields in the 
cavity are in good agreement with earlier studies of the same flow situation. 0 1986 Academic 

Press, Inc. 

1. INTRODUCTION 

In contrast with the vorticity-strcamfunction and vorticity-vector potential 
methods of calculating fluid flows, the primitive variable formulation is the 
preferred route to the solution of complex fluid flows in engineering geometries. 
However, the evaluation of the pressure field has always been the difficult issue in 
the primitive variable approach. In the works of the Los Alamos group, (e.g., 
Harlow and Welch Cl], Harlow and Amsden [2]) time-dependent Navicr-Stokes 
equations are solved in (u, v, p) framework with both explicit and semi-implicit dif- 
ferencing. The explicit method is limited in time-step size by the acoustic Courant 
number, whereas the semi-implicit method is limited by the velocity Courant num- 
ber. A staggered mesh system is used in which pressures are stored at cell centers 
and velocities at cell interfaces. 

Another popular series of methods for solving the primitive variable equations 
was originated by the SIMPLE [4] algorithm of Patankar and Spalding. In 
SIMPLE, the emphasis has been on solving the steady state equations. Like the Los 
Alamos methods, the variables are located on a staggcrcd grid and a decoupled 
solution strategy is used. First, an approximate pressure field is employed to solve 
the momentum equations. A pressure-correction (p’) equation is then derived by 
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combining the finite-differenced continuity equation and approximate forms 
momentum equations. The p’ equation is solved by alternate line sweeps, an 
velocities and pressures are updated to reflect the pressure corrections. Typ 
changes are underrelaxed to obtain numerical stability. SIMPLE has been 
number of diverse engineering situations (e.g., see [S, 6] ). to 
SIMPLE to improve the pressure-velocity coupling have been suggested recently by 
Waithby and Schneider [7], Patankar IS], and Issa [S]. 

In contrast with the decoupled methodology (also called segregate 
Raithby and Schneider [7]), a coupled solution of the momentum and co~t~~~i~y 
equations implicitly retains the pressure-velocity coupling and therefore e~i~~~a~e§ 
the need for the (approximate) pressure or pressure-correction equation. The 
velocities and pressures are simultaneously updated in a linear sense and iterations 
are made to remove the nonlinearities. Such techniques are common in the finite- 
element solution of the fluid flow equations. In Zedan and Schneider [lo] and in 
our own works (Vanka and Leaf [ 111, Vanka [ 12, 13]), the equations are solved 
in the form of blocks consisting of the momentum equations and the continuity 
equation. Zedan and Schneider [lo], however, first derive an approximate ensure 
equation and employ a coupled SIP algorithm extending the work of Sto L141. 
Vanka C1.2, 137 uses the primitive continuity equation without converting it to a 

ssure equation. A sparse matrix inversion routine, combined wit 
d domain splitting techniques, was employed to sdve the linearized equations, 

rocedure calculations of complex turbulent recirculating and reacting 
flows have been made in computational times a factor of ten smaller than those 
required by SIMPLE. 

The present study has been motivated by the recent demo~strat~~~s of the mul- 
tigrid technique 115, 16, 173 as an eflicient iterative solver for linear and no~li~e~~ 

ptic equations. The multigrid technique has several attractive attributes incl~din 
n) operation count in many problems and practically no additional storage 

arrays over those for the variables and their coefficients. In this stu 
investigate the applicability of the multigrid technique for the coupled iterative 
solution of the momentum and continuity equations. A coupled symmetrical 
Gauss-Seidel technique is proposed for the smoothing process. The algorith 
applied to the highly nonlinear flow problem in a are cavity with a moving top 
wall. Calculations are made with finite-difference g 
grid nodes and the results are compared with earlier numerical studies 

2. THE EQUATION SET AND FINITE DIFFERENCING 

Planar &dimensional flows are governed by the following set of ~Qn~inear partial 
differential equations: 
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and 

2.4, + vy = 0. (3) 

For simplicity, constant density and constant laminar viscosity are assumed. The 
above equations are discretized by a hybrid finite-differencing scheme [18], which 
employs second-order central differencing on both convection and diffusion terms 
but automatically modifies the convective differencing procedure to an upwind for- 
mulation when the local cell Reynolds number exceeds two. The hybrid scheme has 
the merits of stability at high ( 32) cell Reynolds numbers (albeit of first-order 
accuracy) and second-order accuracy at low cell Reynolds numbers. 

A staggered mesh system has been used, consistent with other works of the 
primitive variable formulation. Thus velocities are stored on the cell faces and 
pressures are stored at the cell centers. The resulting finite-difference equations (for 
uniform grid dimensions of 6x and 6~) are written as follows; 

Arui+ 1/2j=AE~i+ 1/2j+ I+ A,“ui+ lp- I+ Azui+3pj 

+ A”,“i- 1/2,j + (Pij- Pi+ I,j)/p 6x3 (4) 

AZVij+ 112 = Aivij+3/2 + A,“v,,- 112 + A:v~+ Ij+ 112 

+ At’vui- lj+ l/2 +(Pij-PiJ+lYP~Y, (5) 

and 

(Ui+ 1/2j - ui- 1/2j)/8x + Cvi,j+ l/2 - “ij- 1/2)lJY = O. (6) 

The superscripts relate to the variables and the subscript indices denote the location 
of the variables on the finite-difference grid, i being the index in the x direction. The 
fractional indices refer to the staggered locations of the velocities. The coefficients 
A,, A,, etc. contain averaged velocities and the diffusion coefficient through the 
following expressions: 

A;=A;+A,“+Az+A;, (7) 

A,“=A;+A,“+A;+A;, (8) 

A; = AMAX( / C;- I, D;- ) + C;p, (9) 

A;=AMAX(IC;+I, 0:+)--q+, (10) 

A,“=AMAX(IC;-I, D;-)+C;L (11) 

A,“=AMAX(IC;+I, D;+)-C;+, (12) 

A”,=AMAX(ICxJ, D;J+ Cx-, (13) 

A:=AMAX((Cx+I, 0:+)-C;+, (14) 

A;=AMAX(IC;J, D;-)+C;-, (15) 
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COARSE GRID 
CELL 

and 

where 

and 

FIG. 1. Staggered mesh arrangement. 

A:=AMAX(jC”,+/,D;+)-C;,, 

c,- = osLl,- /6x; D,- =$3x2, 

c,, = OSu,,/6x; D,, = v/6x2, 

c,- = OSv,J6y; D,- = v/kiy2, 

c,, = 0.5vy+/6y; D,, =v/6y2. 

u,- ) u,+, vy- y and vyf denote velocities at the x - , x + , y - , y + sides of the cells 
surrounding the variable in question. 6x, 6y are dimensions of the finite difference 
cells (Fig. 1)” The AMAX function ensures the central difference operator at ceil 
Red 2 and changes the differencing to upwinding at cell e > 2. Also, the 
fluxes at the interfaces are made zero on the presumption of a zero derivativ 
interface. Equations (7) and (8) are obtained by invoking the mass continuity for 

’ Some minor modifications are necessary for the diffusion terms at the near boundary nodes. 
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the velocity cells. The above finite difference equations have been obtained by 
integrating over cells surrounding a local variable, but they are written here as dif- 
ference operators for convenience in using the multigrid technique. 

3. THE MULTIGRID TECHNIQUE 

Given a set of linear finite-difference equations 

LkWk=Fk (21) 

for a general elliptic equation, any iterative procedure such as Gauss-Seidel, Jacobi, 
incomplete LU factorization, etc. is known to converge rapidly for the first few 
iterations and very slowly thereafter. A Fourier analysis of the error reduction 
process shows that these conventional iterative procedures are most efficient in 
smoothing out the errors of wavelengths comparable to the mesh size, but are 
inefficient in annihilating low frequency components. However, the low frequencies 
on any grid are relatively larger on grids that are coarser than the grid in question. 
The multigrid technique is based on the premise that each frequency range of error 
must be smoothed on the grid where it is most suitable to do so. Consequently, the 
multigrid technique cycles between coarser and liner grids until all the frequency 
components are appropriately smoothed. The multigrid concept is distinct from the 
philosophy of starting a line grid solution from an interpolated coarse grid con- 
verged solution. In the latter concept, only a better starting guess is provided. 
Therefore the starting residual is smaller than a “raw” guess, but the asymptotic 
rate of convergence is not improved. The multigrid method, on the other hand, 
cycles between a hierarchy of computational grids Dk with corresponding grid 
functions Wk, k = 1, 2,..., M. The step size on Dk is hk, and hk+ 1 = $hk, so that as k 
decreases, Dk becomes coarser. 

In the simplest version of the multigrid technique [15], the solution is initiated 
on the finest grid M. A few iterations are performed on grid M until the relaxation 
procedure (iterations) fails to smooth the residuals at the desired theoretical rate. 
The iterations are stopped on grid M and the residuals (Lkwk - Fk = Rk; wk is an 
approximation to Wk) are transferred to the next coarser grid, obtained typically by 
doubling the mesh size. The grid functions (variables) are similarly restricted to the 
coarse grid. In this simplest form of the multigrid (MG) technique, called the 
correction scheme (CS), a correction function wkP ’ is calculated by solving the 
system 

,yk-lWk-llIk-lRk 
k 7 (22) 

where Lk-’ . is the operator on grid (k - 1) and lgP 1 is the operator to restrict 
(interpolate) the residual on grid k. The solution to Eq. (22) can be obtained on 
grid (k - 1) itself if (k - 1) is not a large grid. Otherwise a few iterations on (k - 1) 
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are performed, after which Rk-’ is restricted to grid (I&-2). When an accurate 
solution to Eq. (22) is obtained, w kp ’ is prolongated to grid &c, i.e., 

w;,,=w~,d+I;~lWk--. (23) 

The restriction and polongations on grid k are continue 
decrease below a desired accuracy. 

A number of variants to the above outline of the 
oposed, mcluding extensions to nonlinear problems 
G technique, excellent reviews by Brandt [ 151, St 

and the proceedings of recent multigrid conferences [19,20] may 

In this section, we describe the details of the overall algorit m, the smoothing 
operator and the restriction/prolongation relations employed for the block-i licit 
solution of the Navier-Stokes equations. Because of the ~o~p~i~g betw the 
equations, a special smoother called SCGS (symmetrical coupled Gauss-Seeders is 

loped; it is observed to provide good smoothi S is similar to the 
Gauss-Seidel scheme mentioned by Brandt [I5 

We have employed the FAS-FMG (full approximation storage-full ~~~ti~ri~~ 
algorithm originally developed by Brandt [ 151 and subsequently used by many 
investigators, including Ghia, Ghia, and Shin 1211. The FAS , which is 
ideally suited for nonlinear problems, is a generalization of the c on scheme 
(CS). The flow chart of present iterative cycle, shown in Fig. 2, proceeds as follows. 
After a series of grids is chosen, iterations are initiat 8n the coarsest grid 
number 1). On this grid, the solution of the complete nlinear problem is so 

erforming Newton iterations and solving the linear equations 
directly or iteratively. The converged solution on this grid is then ~ro~o~gate~ to 
the next finest grid and a few relaxation sweeps are made. Since the problem is non- 
linear, the coefficients A,“, A;, A:, A;, etc., are reevaluated within the r~~axati~~ 
sweep. When the smoothing on this grid gets worse below a threshold rate 
when 

R, + I/R, > “13 (241 

the residuals are restricted to the coarser grid and smoothed on this grid. 
unlike the correction scheme, in the FAS procedure the values calculated on a coar- 
ser grid (k - 1) are not simple corrections to the values on grid k; instead ey are 

proximations on grid (k - 1) to the correct values on grid k. FAS 
procedure, therefore, the equations solved on (k - 1) are 

Ek-lWk-1 =Fk-1 +I;-l(Fk--kWk)~ 
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FIG. 2. Flowchart of FAS-FMG. 

Here L is the nonlinear operator consisting of convection and diffusion terms in the 
equations. The correction to wk is then 

w:ew = 63 +z~_,(wk-‘-z~-‘W~id). (26) 

Note that in Eq. (26), only the change from the previous value (kkP1 - ZE- ‘wtld) is 
prolongated to grid k and not the value wk ~ ’ itself. This detail is important in the 
FAS scheme; otherwise, convergence of overall sequence may not be good. Before 
the iterations, wk- ’ is set equal to Z~-‘w$, . 

The iterations on each grid level are continued until the required convergence 
criterion is met, at which time the solution vector is transferred to the next finer 
level. When the finest level is solved to the desired accuracy, the overall solution 
cycle is terminated. Note that the tolerance level on any grid is equal to the 
originally prescribed value only when that grid is the current finest grid. However, 
when the current level, k, is less than the current finest level Z, the tolerance on k, &k 
is set to 

&k=6ek+l, (27) 

where ek+ I is the norm of error on grid (k + 1). Typically, 6 = 0.2. As can be seen, 
the complete FAS-FMG process is nested with many loops over the coarse grids. 

The operator on a coarse grid (k - 1) during the smoothing of the restricted 
residuals is calculated from the restricted grid function ZE- lwk. However, as for the 
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fine grid, the operator is linearized around the current solution, wk~ New c~e~c~e~ts 
A:, A;, etc. are calculated from relations (9)(16). Thus, 

Lk-’ = L(I::- lWk). (281 
An alternate way is to evaluate the coefficients A,“, A;, etc. of the coarse gri 
averaging the corresponding tine grid coefficients. The latter procedure avoi 

, but in a few trial calculations, it was found to be either slow in con- 
ivergent. The first method was therefore used in the present study. 

Smoothing Operator 

The choice of an efficient smoothing operator (relaxation procedure) is an i 
tam aspect in the multigrid technique. Although the concept of the multigrid 

ven with poor smoothing operators, the efficiency of the met 
d significantly if the smoothing is not efficient. The choice 

relaxation procedure is somewhat problem dependent and there is always a 
off between a robust technique with a larger operation count and a less rob 
simpler technique with lower operation count. In the past, a number of sm 
have been used on a variety of problems, including nonlinear equations. 

In this study, the momentum and continuity equations are relaxed in a cou 
manner. This choice stems from our earlier observations [I l-13] with a single 
(using d’ t s 1 uec o ution) that for internal viscous flows, the treatment of the 
between the pressure and velocity fields is very crucial to procuring ra 
vergence of the algorithm (see also [7]). The simultaneous relaxation als 

randt’s recommendation [15, pp. 331 that “a locally strongly coupled block of 
unknowns which is locally decoupled (or weakly coupled with) from the coarser- 
grid variables should be relaxed simultaneously.” Ghia et al. [21] have used a 
coupled strongly implicit procedure (CSIP) developed by &in and Khosla 1221 
to simultaneously relax the streamfunction and vorticity equations. The technique 
used in this study is called the symmetrical coupled Gauss-Seidel (SCGS) 
procedure. In the SCGS scheme four velocities and one pressure correspon 
one finite-difference node are simultaneously updated by invertin 
of equations. Thus velocities on all four sides of a cell are updat 
contrasts with an unsymmetrical coupled GS (UCGS) in whit one velocity in 
each direction and the pressure are updated simultaneously. 
initially tried was observed to have poor smoothing and o 
The details of the SCGS scheme are as follows. 
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Consider the finite -difference node (i, j), shown above. The pressure is located at 
the center and the velocities are located staggered on four sides. The equations for 
these five variables are 

and 

where 

(AF)i- 1/2jUi- 1/2,j= F:- l/2>, (29) 

(A"). c L+ 1/2jUi+ 1/2j- -F" i+ 1/2,j> (30) 

(A:)ij- 1/2Vij-l1/2=F&-~1/2, (31) 

(AZ),,+ 1/2Vij+ 112 = F$+ l/2, (32) 

t”i+ 1/2,jyui- l/2,j)/6x + (Vi,j+1/2-vi,j~1/2)lfiY =O, (33) 

4’+ 1/2,j= (A,“)i+ 1/2,jUi+ 1/2,j+ I+ (AY)i+ 1/2,jui+ l/2+ I 

+ (A,“)i+ 1/2,jUi+3/2,j+ (AZ)i+ 1/2,jui- 1/2,j 

+ (Pi,j - Pi+ l,,j)lP 6x2 etc. (34) 

In terms of residuals and corrections at node (i, j), the equations can be written 
as 

(AF)i+ 1/2,jUi+ 1/2,j - Pi,jIP 6X = Rr+ t/2,j = FE”;‘, ll2,j - (A,“)i+ 1/2,jui+ 1/2,j 

(A,“)i- 1/2,juJ- 1/2,j + Pi,j/P 6X= RL 1,~ = f% 1/2,j - (A,“)i- 1/2,jUi- t/2,j> 
(35) 

etc. The above equations can be arranged in a block structure, as follows: 

(AFL 1,2,j 0 0 0 

0 (A:)<+ 1/2,j 0 0 

0 0 (A,“),+ 112 0 

0 0 0 (Ai)i,j+ t/2 

- 1/6x 1/6x - WY WY 

UP 6x 
- l/p 6x 

VP SY 
- l/P 6Y 

0 1 

. (36) 

The above block of equations are inverted analytically by considering the matrix as 
a bordered one. Note that the coefficients A;, A: are not differentiated. Because of 
this approximate Jacobian and the evaluation of the coefficients by successive sub- 
stitution, it was necessary to underrelax the successive changes in the velocities. 
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Such ~~derr~~axatio~ is similar to that performed i 
and its variants [7] that also seek the steady state 
te~b~ique has the effect of a false time dependent 
stab~ii~~~g characteristics. The underrelaxation w 
AZ, A; as follows: 

In the present calculations equal values were used for LX, and oz,. Their op 
value, which varied with the flow Reynolds number was between 0.5 a 
Smaller values were necessary for higher Reynolds numbers. It is, 
necessary to use constant values of underrelaxation factors. These 
more effectiveness, as suggested by Raithby and Schneider [7] a 
Chatwani, Eickhoff and Koopman [31]. 

The SCGS scheme was motivated by the concept that it has SQ 
the solution of the Poisson equation with the traditional Gauss-Se 
SCGS essentially corrects the pressure and the fluxes (velocities 
cell simultaneously. The SCGS contrasts with an ~usymmetri~a~ 
in which only the forward or backward velocities are mod% 
pressure. In contrast with Brandt’s distributive Gauss-Seidel 

oyes a coupled update, whereas DGS is a decouple solution procedure, i.e., 
solves all momentum equations first and then satisfi the continuity equation 

velocities and pressures. Because the SCGS scheme satisfies the 
intwise momentum and continuity e u&ions s~rn~~ta~~o~s~~l it c 
s over DGS in situations where the oefficients A,“, A; vary on t 

sides of the control volume. One such case is en one of the cell faces is partially 
blocked (by a baffle or flame holder, etc.). e SCCS, however, updates each 
velocity component essentially twice. The mbhng of the coeffi6ients and 
residuals requires roughly 100 floating point operations (multiply, divide, or a 
and the inversion of the bordered matrix and correction of variables require 45 
floating point operations. 

The choice of a Gauss-Seidel scheme in lieu of several others was pureEy for 
reasons sf simplicity. Other schemes such as line relaxation on the couple 
equations are also possible. The yet even simpler Jacobi iteration is, however, n 
feasible in the symmetrical update strategy. This is because any velocity is co 
to two cells and the corrections calculated at the two cells in a Jacobi update m 
ner are not superimposable. An additional disadvantage of Jacobi iteration is 
requirement of two sets of arrays, one for the variables and the other for the correc- 
tions. In the SCGS scheme, there is no need for any storage for corrections 
they are applied immediately. 
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Restriction and Prolongation 

The restriction and prolongation procedures are somewhat dictated by the 
staggered mesh arrangement. Restriction is used for transferring fine grid values to 
a coarse grid, whereas prolongation is used for extrapolating a coarse grid correc- 
tion to a fine grid. The two operators were denoted earlier by lEP l and I:- 1, 
respectively. A frequent restriction operator is injection, i.e., the coarse grid value is 
taken to be the local fine grid value. Thus 

f 
w;j= w2i- 1,2j- 1, (39) 

where the superscripts c, f denote coarse and fine grid values. The injection 
operator is not applicable for the staggered mesh because of the different locations 
of variables on coarse and fine meshes (see Fig. 1). In the current study, the restric- 
tions are made by averaging nearby values. Let (ic, jc) and (if, jf) denote coarse 
and line mesh indices, respectively. Also, let ui+ llz,j be referred to as ui,j and ui- 1,2,j 
be referred to as ui- I,j, etc. Then if= 2(ic) - 1, jf= 2(jc) - 1, and 

zC(ic, jc) = $[uf(if, Jy) + L&f, Jy- l)], 

Y’(iC, jC) = $-d(if, Jy) + d(f- 1, Jy)], 

and 

pc(ic,jc)=$[pf(if,~~)+pf(if-1,~~)+pf(if,~~-1)+pf(if-l,~~-1)]. (40) 

The prolongation relations are derived by a bilinear interpolation. For each coarse 
grid node, four line grid values are derived. For u-velocity, they are 

d( if, Jy) = 3 3Uf + U;), 

d(if, Jy+ 1) = b(3u; + U;), 

uf(if+ 1, Jy) = i(3u”l+ u; + 3u; + zq), 

uf(if+ 1, jf+ 1) = i(3u; + u; + 3U$ + US), 

zff = u’(ic, jc); u; = u’(ic, jc + 1); 

24; = u’(ic + 1, jc); 24; = uyic + 1, jc + 1). 
(41) 

The u-velocities can be prolongated by equivalent relations obtained by rotating the 
coordinates by ninety degrees. The pressure prolongations have different weightings 
because of their cell-centered locations. For each coarse grid cell, 

Pf(if, Jy) = &(9P; + 3P; + 3P; + P:), 

Pf(if, Jy + 1) = &(9P; + 3P: + 3P: + P;), 

pf(if+ 1, JY) = &j(9P’z + 3Pf + 3p; + PS), 
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with 

p; = f(ic, jc); p; = pyic + 1, jc); 
p; = p”( ic, jc + 1); pi = pc(ic + 1, jc -I- 1). 

(431 

The above relations are slightly modified near the boundaries to avoid using the 
boundary pressures. Such relations are obtained by assuming a zero derivative con- 
dit:i ~I-I near the boundaries. 

Tire prolongation operator to interpolate coarse grid solution to the next finer 
grit (Ii- I in Fig. 2) may or may not be the same as the ~ro~ongat~o~ operator for 
the corrections. In the present study, for simplicity, the same above operators are 
used for both corrections and the solution. More accurate cubic ~ro~o~~ati~~ 
spe:‘ztors for the solution have been considered before [ 15,211 and can further 
accelerate convergence. However, cubic or higher order polynomial fits are 
somewhat inconvenient to use in practical flows with complex geometrical shapes 
and blocked regions (although they are not considered in this study). 

Ht is necessary to remember that in the FAS-FMG algorithm, the values on the 
coarse grid are not directly prolongated; instead the changes from the previously 
restricted values are prolongated. That is, 

and 

Relations (41), (42) are used on 6wkP1. 

5. APPLICATION TO FLOW IN A DRIVEN CAVITY 

The numerical solution of the flow in a rectangular cavity with the top wall 
moving at a constant velocity has been a standard problem for testing the effkiency 
of many solution algorithms. The problem characterizes the elliptic and nonlinear 
nature of many engineering flows. The flow in a square cavity has also 
interest because of the yet unresolved controversies on the flow structure 
Reynolds numbers (3 5000). A number of numerical studies have been p 
(e.g., [23, 24, 251) although the accuracy of many of the results at high 
numbers remains doubtful. Some have employed the upwind differencing, while 
some others have used the hybrid formulation. A review up to 1978 has been made 
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by Tuann and Olson [26] in which the finite element and finite difference 
approaches have been compared. Recent studies of this problem have been done by 
Ghia et al. [21], Agarwal [27], Benjamin and Denny [28], and Rubin and Khosla 
[22]. Ghia et al. used the coupled SIP with the multigrid concept and stream 
function-vorticity formulation. Numerical solutions up to Re = 10,000 were 
obtained with 257 x 257 grid nodes in modest CPU times. The results of Agarwal 
and of Ghia et al. are in good agreement with very recent studies by Schreiber and 
Keller [29, 301. In the latter, a number of novel techniques such as continuation 
methods have been employed to obtain solutions up to Re = 10,000. The technique 
used here is significantly different from earlier investigations and has wider 
applicability to other engineering flow situations, including three-dimensional flows. 

In the application of the present algorithm to the square cavity problem, a num- 
ber of flow Reynolds numbers and several finite-difference grids have been con- 
sidered. Calculations have been made for Reynolds numbers of 100, 400, 1000, 
2000, and 5000 with grids consisting of 41 x 41, 81 x 81, 161 x 161, 321 x 321 tinite- 
difference nodes. The boundary conditions were of the Dirichlet type for velocities, 
and no boundary conditions were necessary for the pressure. The singularity of the 
system of equations (because of the incompressibility condition) was resolved by 
holding the pressure fixed at the corner (I= 2, J= 2) node. The threshold 
smoothing rate, q, for switching from tine to coarse grids was fixed at 0.5, for all 
calculations. The sensitivity of the rate of convergence to values of y has not been 
assessed in this study but will be investigated in the future. All calculations were 
initiated from zero velocity and pressure fields without using information from 
previous solutions at lower Reynolds numbers. The convergence criterion was 
based on the summed average residual in the three equations. Thus, 

R con" = 
[, 

; { (R;J2 + (R&)* + (R:j)2},(IMAX*JMAX*3)]1’2, (46) 

where R", R", and R" are residuals in the u, v momentum equations and in the con- 
tinuity equations. The momentum residuals have been normalized by pu’, and the 
mass error is normalized by pu,, where u, is the top wall velocity and p is the den- 
sity. R,,,, was set to lop3 and when the fine grid residual decreased below this 

TABLE I 

Optimal Underrelaxation Factors 

41 x41 0.8 0.8 0.6 0.6 0.6 
81 x 81 0.8 0.8 0.6 0.6 0.5 

161 x 161 0.8 0.8 0.6 0.6 0.5 
321 x 321 0.8 0.8 0.5 0.5 
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TABLE II 

CPU Times” and Number of Iterations 

41 x 41 4.09 6.09 12.42 16.43 21.0 
12 15 26 32 51 
32 41 95 125 160 

81 x 81 16.52 22.0 52.0 88.0 
15 12 24 33 
33 43 100 169 

161 x 161 64.0 
15 
31 

71.0 
14 
35 

154.0 
19 
74 

280.0 
25 

133 

1080.4 
21 

131 

133.0 
60 

250 

853.0 
52 

403 

321 x 321 282.0 267.0 644.0 
16 15 23 
34 32 78 

400 1000 

“IBM 3033 s. 

value, the calculations were terminated. On the coarsest mesh I?,,,, was IO-“. T 
nod.es were numbered in a lexicographic order. FQH all the 

timum underrelaxation factor was first evaluated on coarser 
increased nonlinearity at higher Reynolds numbers, it was necessary to use Power 
values of the relaxation parameter at higher Re. It was ern~~r~ca~~y observed that 
the CPU times differed at most by a factor of two between the calculations with the 
optimum value and with a near-optimum value (of course, for excessively large 
values of this parameter, divergence also resulted). It was also observed that the 

‘“‘bo 
FINE GRID ITERATION NUMBER 

FIG. 3. Rate of convergence for Re = 100. 
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TABLE III 

Experimentally Observed Smoothing Rates in 
Initial Iteration with Lexicographic Ordering 

81 x 81 161x161 321 x 321 

100 0.36 0.35 0.36 0.36 
400 0.45 0.40 0.36 0.36 

1oOa 0.63 0.63 0.57 0.59 
2000 0.62 0.66 0.64 0.65 
5000 0.67 0.72 0.75 

number, the calculations with the finest grid were not pursued. Figures $4, 5 show 
some of the observed rates of convergence. 

The rate of smoothing, i.e., proportionate decrease of residuals with iterations is 
found to vary with iteration number, grid density, and Reynolds numbers. Table II 
gives some empirically observed smoothing factors in the initia 
calculations. Also, in in the present study, an adaptive strategy has 
decide the time of restrictions to coarse grids. Alternatively a fixed c 
strategy can also be used. It is unknown at this stage which strategy gives the lower 
work count. Certainly this must be examined in future studies. In comparison with 
a single grid convergence history, these rates are much faster. For example; for a 
41 x 41 gri e = 400 calculation, a single grid requires 506 iterations. With the use 
of multigrid technique, only 47 equivalent iterations are required. For larger grids, 
the advantage of the multigrid technique is much larger. Figure 6 shows con- 
vergence history of three single grid calculations using the SCGS ation. 

The present CPU times are significantly smaller than the times red by some 
oth.er primitive variable formulations known to us. However, comparison with all 
such procedures is a monumental task and even then will not be useful because the 

0 200 400 500 800 
FINE GRID ITERATION NUMBER 

FIG. 6. Rates of convergence for single grid SGGS. 
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list of competing methods will not be exhaustive. On a very gross level, we have 
compared present CPU times with those of the SIMPLE algorithm that has been 
used in many earlier investigations. For Re = 1000 and a grid of 81 x 81 nodes, we 
observe that the present method is faster by a factor of fifty over SIMPLE. The 
present times can also be compared with those of Ghia et al. [21] using a $ NO 
formulation and coupled SIP multigrid technique. Their times and ours are quite 
close. However, they terminated their calculations at a lower accuracy level. 

In contrast with the direct inversion procedure by LU factorization (e.g., Vanka 
and Leaf [lo]), the use of multigrid techniques requires much less storage. 
Currently, storage is required only for the variables u, v, and p, and the vectors of 
residuals. The coefftcients are evaluated dynamically during the iteration stage for 
each node (i, j); hence no storage has been necessary. The variables are stored for 
all the grids, including the coarse ones. This means that an additional 3 of the 
storage for the finest grid is required. The residuals, however, are stored only for the 
coarse grids. The total array storage for a (m x m) grid is approximately 5m2. Thus 
for the 321 x 321 grid a total job card storage of 550 K words was adequate. 

6. RESULTS 

The motion of the top wall sets up a complex vortex structure in the cavity. At 
low Reynolds numbers, the flow consists of a primary vortex and two secondary 
vortices at the bottom upstream and downstream corners. As the Reyholds number 
is increased beyond a value of -1500, another vortex is formed at the upstream 
(left) top corner of the cavity. Figure 7 shows the contours of stream function for 
the several Reynolds numbers considered. These flow patterns are in good 
agreement with earlier results of Schreiber and Keller [30], Agarwal [27], and 
Ghia et al. [21]. The minor vortices embedded in the bottom corners are not plot- 
ted here because the contour intervals were selected to be uniform, and the stream 
function in those locations were of the order of 10p5. Table IV gives the values of 

TABLE IV 

Selected Characteristics of the Driven Cavity Flow 

Primary vortex Lower left vortex Lower right vortex 

Re i,,, x Y $ max X Y i max x Y 

100 0.1034 0.6188 0.7375 - 1.94E- 6 0.0375 0.03 13 -1.14E-5 0.9375 0.0563 
400 0.1136 0.5563 0.6000 - 1.46E- 5 0.0500 0.0500 -6.456-4 0.8875 0.1188 

1000 0.1173 0.5438 0.5625 -2.246-4 0.075 0.08 13 -1.74E-3 0.8625 0.1063 
2000 0.1116 0.5250 0.5500 -6.90E-4 0.0875 0.1063 -2.60E- 3 0.8375 0.0938 
5000 0.0920 0.5125 0.5313 -1.67E-3 0.0625 0.1563 -5.49E-3 0.8500 0.0813 



FIG. 7. (a) Contours of streamfunction, Re = 100, 321 x 321 grid. (h) Contours of streamfunction, 
Re = 400, 324 x 321 grid. (c) Contours of streamfunction, Re = 1000, 321 x 321 grid. (d) Contours of 
streamfunction, Re = 2000: 321 x 321 grid. (e) Contours of streamfunction, Re - SOGO, 161 x 161 grid. 
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TABLE V 

Maximum Negative Velocity (and Location) on Vertical Centerline 

“” 41x41 81x81 161x161 

100 - 0.202 - 0.209 
(0.4625) (0.4562) 

400 -0.279 -0.318 
(0.2875) (0.2812) 

1000 -0.258 -0.338 
(0.1875) (0.1812) 

2000 - 0.229 -0.311 
(0.1375) (0.1312) 

5000 -0.189 -0.262 
(0.0875) (0.09375) 

-0.212 
(0.4594) 

- 0.326 
(0.2781) 

-0.381 
(0.1719) 

-0.379 
(0.1219) 

-0.335 
(0.08437) 

321 x321 

-0.213 
(0.4578) 

-0.327 
(0.2797) 

-0.387 
(0.1734) 

-0.415 
(0.1203) 

the maximum stream function and the locations in the central, bottom left and bot- 
tom right vortices. The values for the central (primary) vortex are in excellent 
agreement with earlier results. Some differences are found in the bottom corner 
values; the differences can be justified because the values of the streamfunction are 
small and, in some cases, below the convergence accuracy of the present as well as 
the previous calculations. 

The effect of the finite-difference grid on the calculated results is shown in 
Table V by considering the value of the maximum negative velocity on the vertical 
centerline. It is seen that the 161 x 161 grid is accurate up to Re = 1000 and beyond 
this value finer grids are necessary. Figure 8 shows a typical velocity profile on the 

321 x 321 GR13 

161 x 161 GRlD 

41 X 41 GRID 
~-- 

FIG. 8. Velocity profile along vertical centerline, Re = 1000.0. 
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vertical centerline for Re = 1000. For this Reynolds number, the results for 
x 321 grid and the 161 x 161 grid are in close agreement. These profiles are also 

:n good agreement with earlier results, such as those of 

7. SUMMARY 

An efficient calculation procedure for steady state Navier-Stokes equations in the 
primitive variable formulation has been developed using a coupled solution of 
equations by the multigrid technique. A smoothing technique called SCGS has been 
developed that is observed to provide good smoothing rates. The algorithm is 
applied to study the flow structure in a square cavity with a moving top wall. 
Calculations at very high Reynolds numbers have been made in modest co 
times. Good convergence has been observed in almost all cases except with v 
grids and very large Reynolds numbers. The computer times are observed to vary 
as O(n) (except at Re = SOOO), which is the theoretically expected rate 
tigrid technique. The current CPU times are significantly smaller 
primitive variable formulations using decoupled solutions and one 

ncepts. The current times are comparable with a sl/ - w multigrid proce 
(u, u, p) formulation has more applicability to complex geometri 

dimensional flows 
The present flow fields are compared with previously published numerical results 

and good agreement has been observed. As future work, we shah be extending the 
scheme to three dimensions and to turbulent and reacting flows where the 
ensity and viscosity vary spatially. Also the efficiency of a coupled ILU fac- 
on as a smoother for highly nonlinear pro eing investigated. 

odifkations for adaptation on a vector processor are also being considered. 
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